Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present Magellan/IMACS and Magellan/MIKE spectroscopy of the ultra-faint dwarf (UFD) galaxy Pictor~II (Pic~II) that is located only 12 kpc from the Large Magellanic Cloud (LMC). From the IMACS spectroscopy, we identify 13 member stars and measure a mean heliocentric velocity of , a velocity dispersion of , a mean metallicity of , and an upper limit on the metallicity dispersion of . We measure detailed elemental abundances for the brightest star, finding , high [ /Fe] ratios, and no detectable neutron capture elements, similar to stars in other UFDs. However, this star has an unusually high [Sc/Fe] ratio. The dynamical mass-to-light ratio ( ), size, and chemical abundances confirms that Pic~II is a dark matter-dominated dwarf galaxy. We perform detailed orbit modeling of Pic~II in a combined Milky Way (MW) and LMC potential and find that Pic~II is highly likely to be a long-term LMC satellite. Furthermore, we find that Pic II is likely still bound to the LMC today. Pic~II is the seventh LMC-associated UFD and among the most metal-poor UFDs known. We further update the morphological parameters with deeper Dark Energy Camera (DECam) photometry, compute the dark matter properties for dark matter indirect detection searches, verify the extremely low metallicity with narrowband CaHK imaging, and briefly discuss tidal influences of the LMC and MW.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract We present the discovery of Aquarius III, an ultra-faint Milky Way satellite galaxy identified in the second data release of the DECam Local Volume Exploration survey. Based on deeper follow-up imaging with DECam, we find that Aquarius III is a low-luminosity ( ), extended ( pc) stellar system located in the outer halo (D⊙= 85 ± 4 kpc). From medium-resolution Keck/DEIMOS spectroscopy, we identify 11 member stars and measure a mean heliocentric radial velocity of for the system and place an upper limit ofσv< 3.5 km s−1(σv< 1.6 km s−1) on its velocity dispersion at the 95% (68%) credible level. Based on calcium-triplet metallicities of the six brightest red giant members, we find that Aquarius III is very metal-poor ([Fe/H]= − 2.61 ± 0.21) with a statistically significant metallicity spread ( dex). We interpret this metallicity spread as strong evidence that the system is a dwarf galaxy as opposed to a star cluster. Combining our velocity measurement with Gaia proper motions, we find that Aquarius III is currently situated near its orbital pericenter in the outer halo (rperi= 78 ± 7 kpc) and that it is plausibly on first infall onto the Milky Way. This orbital history likely precludes significant tidal disruption from the Galactic disk, notably unlike other satellites with comparably low velocity dispersion limits in the literature. Thus, if further velocity measurements confirm that its velocity dispersion is truly belowσv≲ 2 km s−1, Aquarius III may serve as a useful laboratory for probing galaxy formation physics in low-mass halos.more » « less
-
Abstract We present the discovery of DELVE 6, an ultra-faint stellar system identified in the second data release of the DECam Local Volume Exploration (DELVE) survey. Based on a maximum-likelihood fit to its structure and stellar population, we find that DELVE 6 is an old ( τ > 9.8 Gyr at 95% confidence) and metal-poor ([Fe/H] < −1.17 dex at 95% confidence) stellar system with an absolute magnitude of M V = − 1.5 − 0.6 + 0.4 mag and an azimuthally averaged half-light radius of r 1 / 2 = 10 − 3 + 4 pc. These properties are consistent with the population of ultra-faint star clusters uncovered by recent surveys. Interestingly, DELVE 6 is located at an angular separation of ∼10° from the center of the Small Magellanic Cloud (SMC), corresponding to a 3D physical separation of ∼20 kpc given the system’s observed distance ( D ⊙ = 80 kpc). This also places the system ∼35 kpc from the center of the Large Magellanic Cloud (LMC), lying within recent constraints on the size of the LMC’s dark matter halo. We tentatively measure the proper motion of DELVE 6 using data from Gaia, which we find supports a potential association between the system and the LMC/SMC. Although future kinematic measurements will be necessary to determine its origins, we highlight that DELVE 6 may represent only the second or third ancient ( τ > 9 Gyr) star cluster associated with the SMC, or one of fewer than two dozen ancient clusters associated with the LMC. Nonetheless, we cannot currently rule out the possibility that the system is a distant Milky Way halo star cluster.more » « less
-
Abstract We report the discovery of six ultra-faint Milky Way satellites identified through matched-filter searches conducted using Dark Energy Camera (DECam) data processed as part of the second data release of the DECam Local Volume Exploration (DELVE) survey. Leveraging deep Gemini/GMOS-N imaging (for four candidates) as well as follow-up DECam imaging (for two candidates), we characterize the morphologies and stellar populations of these systems. We find that these candidates all share faint absolute magnitudes ( M V ≥ −3.2 mag) and old, metal-poor stellar populations ( τ > 10 Gyr, [Fe/H] < −1.4 dex). Three of these systems are more extended ( r 1/2 > 15 pc), while the other three are compact ( r 1/2 < 10 pc). From these properties, we infer that the former three systems (Boötes V, Leo Minor I, and Virgo II) are consistent with ultra-faint dwarf galaxy classifications, whereas the latter three (DELVE 3, DELVE 4, and DELVE 5) are likely ultra-faint star clusters. Using data from the Gaia satellite, we confidently measure the proper motion of Boötes V, Leo Minor I, and DELVE 4, and tentatively detect a proper-motion signal from DELVE 3 and DELVE 5; no signal is detected for Virgo II. We use these measurements to explore possible associations between the newly discovered systems and the Sagittarius dwarf spheroidal, the Magellanic Clouds, and the Vast Polar Structure, finding several plausible associations. Our results offer a preview of the numerous ultra-faint stellar systems that will soon be discovered by the Vera C. Rubin Observatory and highlight the challenges of classifying the faintest stellar systems.more » « less
-
ABSTRACT We use the SMASH survey to obtain unprecedented deep photometry reaching down to the oldest main-sequence turn-offs in the colour–magnitude diagrams (CMDs) of the Small Magellanic Cloud (SMC) and quantitatively derive its star formation history (SFH) using CMD fitting techniques. We identify five distinctive peaks of star formation in the last 3.5 Gyr, at ∼3, ∼2, ∼1.1, ∼0.45 Gyr ago, and one presently. We compare these to the SFH of the Large Magellanic Cloud (LMC), finding unequivocal synchronicity, with both galaxies displaying similar periods of enhanced star formation over the past ∼3.5 Gyr. The parallelism between their SFHs indicates that tidal interactions between the MCs have recurrently played an important role in their evolution for at least the last ∼3.5 Gyr, tidally truncating the SMC and shaping the LMC’s spiral arm. We show, for the first time, an SMC–LMC correlated SFH at recent times in which enhancements of star formation are localized in the northern spiral arm of the LMC, and globally across the SMC. These novel findings should be used to constrain not only the orbital history of the MCs but also how star formation should be treated in simulations.more » « less
-
The Large Magellanic Cloud (LMC) is the closest and most studied example of an irregular galaxy. Among its principal defining morphological features, its off-centred bar and single spiral arm stand out, defining a whole family of galaxies known as the Magellanic spirals (Sm). These structures are thought to be triggered by tidal interactions and possibly maintained via gas accretion. However, it is still unknown whether they are long-lived stable structures. In this work, by combining photometry that reaches down to the oldest main sequence turn-off in the colour-magnitude diagrams (CMD, up to a distance of ∼4.4 kpc from the LMC centre) from the SMASH survey and CMD fitting techniques, we find compelling evidence supporting the long-term stability of the LMC spiral arm, dating the origin of this structure to more than 2 Gyr ago. The evidence suggests that the close encounter between the LMC and the Small Magellanic Cloud (SMC) that produced the gaseous Magellanic Stream and its Leading Arm also triggered the formation of the LMC’s spiral arm. Given the mass difference between the Clouds and the notable consequences of this interaction, we can speculate that this should have been one of their closest encounters. These results set important constraints on the timing of LMC-SMC collisions, as well as on the physics behind star formation induced by tidal encounters.more » « less
-
Abstract We present the second public data release (DR2) from the DECam Local Volume Exploration survey (DELVE). DELVE DR2 combines new DECam observations with archival DECam data from the Dark Energy Survey, the DECam Legacy Survey, and other DECam community programs. DELVE DR2 consists of ∼160,000 exposures that cover >21,000 deg 2 of the high-Galactic-latitude (∣ b ∣ > 10°) sky in four broadband optical/near-infrared filters ( g , r , i , z ). DELVE DR2 provides point-source and automatic aperture photometry for ∼2.5 billion astronomical sources with a median 5 σ point-source depth of g = 24.3, r = 23.9, i = 23.5, and z = 22.8 mag. A region of ∼17,000 deg 2 has been imaged in all four filters, providing four-band photometric measurements for ∼618 million astronomical sources. DELVE DR2 covers more than 4 times the area of the previous DELVE data release and contains roughly 5 times as many astronomical objects. DELVE DR2 is publicly available via the NOIRLab Astro Data Lab science platform.more » « less
An official website of the United States government
